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This paper explores the utility of a discrete singular convolution algorithm for vibration
analysis. A number of di!erent realizations of singular convolution kernels are selected to
illustrate the present algorithm. Vibration analysis of strings, rods, beams, diatomic
molecules, membranes, waveguides and thin plates are utilized to test numerical accuracy
and speed of convergence of the present approach. Numerical experiments indicate that the
discrete singular convolution is a simple and reliable algorithm for vibration analysis.
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1. INTRODUCTION

Historically, vibration analysis is regarded as a branch of mechanics initiated by the
observation of mechanical oscillators such as a pendulum. The study of vibration is
concerned with the oscillatory motion of physical objects with or without external forces.
Vibration analysis is one of the most important factors in the engineering design, since
certain resonances may lead to the failure of major structures such as bridges, buildings, or
airplane wings. Recently, vibration analysis has emerged as a multidisciplinary research
"eld. Apart from the engineering research activities, there are studies in chemistry
concerned with chemical oscillations and molecular vibrations, in physics with waveguide
modes, plasma vibrators, and earthquakes, in physiology with the periodic motion of the
lungs, or heart, or impact of medicine intake, and vibration of eardrums, in environment
science with periodic or quasi-periodic climatic motion, and pollution of noise by man-
made devices. At a more fundamental level, mathematicians are interested in non-linear
quasi-periodic dynamical systems and their relation to ergodics and chaos. Conventional
methods for vibration analysis are based either on theory or on experiment. However,
experiments can be extremely expensive and practical problems are either too di$cult or
simply impossible to accomplish by analytical methods. Therefore, numerical simulations
play a more and more important role in modern vibration analysis.

The advent of digital computers has given tremendous impetus to all numerical methods
for solving science and engineering problems, including vibration simulations. Although
there has been a great deal of achievement in developing accurate, e$cient and robust
computational methods, "nding numerical solutions for partial di!erential equations
(PDEs) is still a challenge owing to the presence of possible singularities and/or homoclinic
manifolds that induce sharp transitions in the solutions. These phenomena can be observed
in many real systems such as black holes in astronomy, shock waves in compressible #uid
022-460X/01/280535#19 $35.00/0 ( 2001 Academic Press
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#ow, vortex sheets in incompressible #ow associated with a high Reynolds number, and
burst events in the turbulent boundary layer. The di$culties associated with these
phenomena can often be characterized by sharp changes occurring in a very small spatial
region which can strongly in#uence the global properties of the system. The presence of
these phenomena can be extremely sensitive to numerical algorithms and can easily lead to
numerically induced spatial and/or temporal chaos [1]. The conventional methods for these
problems may be classi"ed as either global methods [2}6] or local methods [7}13]. In
global methods, unknown functions and their derivatives are expanded in terms of a "nite
basis set with each element having a global support. The expansion coe$cients are often
determined by the method of Tau, or Galerkin, or collocation, or others. In the Tau method,
the residual for a truncated expansion is required to be orthogonal to a subset of basis
functions used in the expansion, which, together with the boundary conditions, determines
the expansion coe$cients. In the global Galerkin method, a new set of basis functions is
constructed by the superposition of the original basis functions. The requirement that the
residual be orthogonal to the new set of basis functions, together with the boundary
conditions, determines the expansion coe$cients. In the global collocation approach, the
residual vanishes at a subset of node points of the highest order basis function used in the
expansion. The global collocation is also called pseudospectral method. Three most
important local approaches are "nite di!erence, "nite volume and "nite element methods.
In "nite di!erence methods, the solution is interpolated in terms of a set of grid values; the
spatial derivatives are usually approximated by algebraic expressions involving nearest-
neighbor grid points. In "nite volume approaches, the emphasis is on a set of integro-
di!erential equations and their associated surface and volume integrations. The values on
the boundary of each &&numerical molecule'' are usually interpolated by low order schemes.
The spatial derivatives are approximated in the same way as those used in the "nite
di!erence methods. Finite element methods form one of the most versatile class of
numerical methods. Depending on the system under study, "nite element methods can be
formulated either in terms of the method of weight residuals or in terms of variational
principles. Usually, PDEs are integrated by using a set of trial functions, each with a small
region of support. The solution is represented by linear superpositions of these trial
functions. Global methods are highly localized in their spectral space, but are unlocalized in
the co-ordinate space. By contrast, local methods have high spatial localization, but are
delocalized in their spectral space. Moreover, the use of global methods is usually restricted
to structured grids, whereas, local methods can be implemented to block-structured grids
and even unstructured grids. In general, global methods are much more accurate than local
methods, while the major advantage of local methods is their #exibility for handling
complex geometries and boundary conditions. In ordinary applications, it is relatively safe
and e$cient to use either a global method or a local one for numerically solving an ordinary
di!erential equation or a partial di!erential equation. However, when a di!erential
equation has singularities and/or homoclinic orbits, neither the global methods nor the
local methods can be applied without numerical instabilities. The global methods lose their
accuracy near the singularities due to local high-frequency components. The local methods
have to be implemented in an adaptive manner, which greatly limits their accuracy and
requires extremely small (spatial and/or time) mesh sizes. In many situations, the rate of
convergence of a numerical method simply cannot match the divergent rate of the problem
under study at a singularity. It is desired to have a method that has both spectral and spatial
localization, and is thus locally smooth and asymptotically decaying in both spectral and
co-ordinate spaces, and combines a global method's accuracy with a local method's
#exibility. Wavelet theory and its applications have been expected to ful"ll this task. Theory
of wavelets developed in recent years has great impact in telecommunication and electronic
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engineering and has found their applications in a variety of other science and engineering
disciplines. Mathematically, wavelets are functions generated from a single function by
dilation and translation. They form building blocks for some space, such as ¸2(R), whether
as a frame or as an orthonormal basis. Such building blocks are computationally important
when they have certain regularity and localization in both time and frequency domains.
Physically, the wavelet transform is a mathematical technique that can be used to split
a signal into di!erent frequency bands or components so that each component can be
studied with a resolution matched to its scale, thus providing excellent frequency and spatial
resolution, and achieving computational e$ciency. The possibility of using wavelet theory
for computational physics and engineering has been extensively explored recently.
However, before wavelet approaches can be practical use in competing with the existing
global and local methods, a number of technical di$culties are to be overcome. In our view,
the "rst di$culty is the implementation of boundary conditions in a multiresolution setting.
The second di$culty is the requirement of su$ciently high wavelet regularity to provide
su$ciently weak solutions. Moreover, there is a lack of general and systematic numerical
algorithms for incorporating wavelets in an e$cient manner.

Discrete singular convolution (DSC) has recently been proposed [14] as a potential
approach for numerically solving some science and engineering problems [15], including
linear and non-linear dynamics, Hilbert transform, processing of analytic signals,
electromagnetics, and computed tomography. The DSC algorithm is found to provide
a basis for a uni"cation of many computational methods [16}18] such as methods of
global, local, Galerkin, collocation and "nite di!erence. In fact, the underlying
mathematical structure of DSC is the theory of distributions and wavelet analysis. One of
the distributions used in the aforementioned applications is the Dirac delta function which
is a generalized function following from the fact that it is an integrable function inside
a particular interval but itself needs not to have a value. Heaviside introduced both the unit
step Heaviside function and the Dirac delta function as its derivative and referred to the
latter as the unit impulse. Dirac, for the "rst time, explicitly discussed the properties of d in
his classic text on quantum mechanics; for this reason d is often called Dirac delta function.
However, delta distribution has a history which antedates both Heaviside and Dirac. It
appeared in an explicit form as early as 1822, in Fourier's ¹heH orie Analytique de la Chaleur.
The work of Heaviside, and subsequently of Dirac, in the systematic but informal
exploitation of the step function and delta function has made delta distribution familiar to
physicists and engineers before Sobolev, Schwartz [19], Korevaar [20] and others put it
into a rigorous mathematical form. General orthogonal series analysis of the delta
distribution have been subsequently studied by Walter [21] and others [22}24]. The use of
many delta sequences as probability density estimators was discussed by Walter and Blum
[24] and others [23, 25, 26].

The purpose of the present paper is to explore the utility of the DSC algorithm for
vibration analysis. This is illustrated by numerically solving a few classes of vibration
problems. This paper is organized as follows. Section 2 is devoted to a brief review of the
theory and implementation of the DSC algorithm. We only review the part of the theory
that is relevant to the present applications. The reader is referred to reference [14] for more
details. The numerical application of vibration analysis by using the DSC algorithm is
presented in section 3. Mechanical vibrations of strings, rods, beams are discussed, followed
by the numerical analysis of the quantum vibrations of I

2
molecules. To further test the

present DSC algorithm, the vibration of a rectangular membrane is analyzed. Accurate
frequency computation of waveguide modes, which is crucial for the design of
electromagnetic devices, is carefully studied before a high-accuracy analysis of thin plate
vibrations is given. This paper ends with a brief conclusion.
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2. DISCRETE SINGULAR CONVOLUTION

It is convenient to discuss the theory of singular convolution in the context of
distributions. Let us denote by ¹ a distribution and g (t) as an element of the space of test
functions. A singular convolution can be expressed as

F (t)"(¹ * g) (t)"P
=

~=

¹(t!x)g (x) dx. (1)

Here ¹ (t!x) is a singular kernel. Depending on the form of the kernel ¹, the singular
convolution is the central issue for a wide range of science and engineering problems. For
example, singular kernels of the Hilbert type have a general form of

¹ (x)"
1

xn
(n"1, 2,2). (2)

Here, kernel ¹(x)"1/x commonly occurs in electrodynamics, theory of linear response,
signal processing, theory of analytic functions, and the Hilbert transform; ¹(x)"1/x2 is the
kernel used in tomography. Singular kernels of the Abel type

¹(x)"
1

xb
(0(b(1), (3)

was introduced in the tautochrone problem. It has applications in the area of holography
and interferometry with phase objects and is of practical importance in aerodynamics, heat
and mass transfer, and plasma diagnostics. Other interesting examples are singular kernels
of the delta type

¹(x)"d(n)(x) (n"0, 1, 2,2). (4)

Here, kernel ¹(x)"d (x) is important for interpolation of surfaces and curves (including
atomic, molecular and biological potential energy surfaces); and ¹(x)"d(n)(x) (n"1, 2,2)
are essential for numerically solving partial di!erential equations. However, since these
kernels are singular, they cannot be directly digitized in computer. Hence, the singular
convolution, (1), is of little numerical merit. To avoid the di$culty of using singular
expressions directly in computer, sequences of approximations (¹a) of the distribution¹ can
be constructed

lim
a?a0

¹a (x)P¹(x), (5)

where a
0

is a generalized limit. Obviously, in the case of ¹(x)"d(x), the sequence, ¹a(x), is
a delta sequence. Moreover, with a su$ciently smooth approximation, it is useful to
consider a discrete singular convolution (DSC)

Fa (t)"+
k

¹a(t!x
k
) f (x

k
), (6)

where Fa (t) is an approximation to F (t) and Mx
k
N is an approximate set of discrete points on

which the DSC (6) is well de"ned. Note that, the original test function g(x) has been replaced
by f (x). The mathematical property or requirement of f (x) is determined by the
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approximate kernel ¹a . In general, the convolution is required being Lebesgue integrable.
A sequence of approximation can be improved by a regularizer

lim
a?=

Rp(x)"1. (7)

The regularizer is designed to increase the regularity of convolution kernels. For the delta
sequence, it follows from Eq. (5) that

P lim
a?a0

¹a (x)Rp(x) dx"Rp(0)"1, (8)

where Rp(0)"1 is the special requirement for a delta regularizer. A typical delta regularizer
used in this work and elsewhere [27] is exp(!x2/2p2). However, for certain class of
problems, this regularization may not be necessary (see for example, the molecular vibration
in the next section).

As a special example, Shannon's kernel sin ax/nx is a delta sequence kernel

lim
a?a0 T

sin ax

nx
, g(x)U"g (0). (9)

The Shannon delta sequence kernel can be regarded as a series of the Fourier base
approximations of the delta kernel. Similarly, Hermite function expansion of the delta
distribution is given by

d
n,p(x)"exp(!x2/2p2)

n
+
k/0
A
!1

4 B
k 1

Jnk!
H

2k A
x

J2p2B , (10)

where H
2k

(x/J2p) is the usual Hermite polynomial. This delta sequence was studied by
Schwartz [19], Korevaar [28], and Ho!man et al. [29]. Various cases involving many
classic ¸2 bases can be found in Walter and Blum's paper [24]. Other important examples
include the Dirichlet kernel

sin[(l#1
2
) (x!x@)]

2n sin[1
2
(x!x@]

,

the modi"ed Dirichlet kernel

sin[(l#1
2
)(x!x@)]

2n tan[1
2
(x!x@)]

and the de la ValleH e Poussin kernel

1

na
cos[a (x!x@)]!cos[2a(x!x@ )]

(x!x@)2
.

For sequences of both the delta type and the Hilbert type, an interpolating (or quasi-
interpolating) algorithm sampling at Nyquist frequency, a"n/D, has great advantage over
a non-interpolating discretization. Hence the Shannon's kernel is discretized and
regularized [27] as

sin[a(x!x@)]
n (x!x@)

P

sin(n/D)(x!x
k
)

(n/D)(x!x
k
)

e~(x~xk)2@2p2 . (11)
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The wavelet connection of this expression is discussed elsewhere [27] and it is referred to as
a quasi-wavelet scaling function (QWSF). Not only does the interpolating (or quasi-
interpolating) nature guarantee the highest accuracy on the set of grid points, but also it
provides the highest possible computational e$ciency o! a grid. This is because the Nyquist
interval given by [!n/D, n/D] is the largest possible sampling interval that is free of alias
whenever the ¸2 function f (x) under study satis"es the Nyquist condition

supp fK (k)LG!
n
D

,
n
DH . (12)

This fact can be formally given by Shannon's sampling theorem

f (x)"
=
+

k/~=

f (x
k
)
sin(n/D)(x!x

k
)

(n/D)(x!x
k
)

. (13)

The signi"cance of Shannon's sampling theorem is that by a discrete, but in"nite set of
sampling data M f (x

k
)N one can actually recover a band-limited ¸2 function on a real line.

Shannon's sampling theorem has great impact on information theory, signal and image
processing because the Fourier transform of Shannon's kernel is an ideal low-pass "lter for
signals band-limited to [!n/D, n/D].

The uniform, Nyquist-rate, interpolating discretization and the regularization are used
for the Dirichlet kernel:

sin[(l#1
2
) (x!x@)]

2n sin[1
2
(x!x@)]

P

sin((n/D)(x!x
k
))

(2M#1)sin((n/D)(x!x
k
)/(2M#1))

expA!
(x!x

k
)2

2p2 B . (14)

This is referred to as regularized Dirichlet kernel (RDK). In comparison to Shannon's
kernel, the Dirichlet kernel has one more parameter M which can be optimized to achieve
better results in computations. Usually, we set a su$ciently large M for various numerical
applications. Obviously, the Dirichlet kernel converts to Shannon's kernel at the limit of
MPR. These uniform interpolating discretization and the regularization will also be used
for the modi"ed Dirichlet kernel

sin[(l#1
2
)(x!x@)]

2n tan[1
2
(x!x@)]

P

sin((n/D)(x!x
k
))

(2M#1)tan((n/D)(x!x
k
)/(2M#1))

expA!
(x!x

k
)2

2p2 B (15)

and for the de la ValleH e Poussin kernel

1

na
cos[a(x!x@)]!cos[2a(x!x@)]

(x!x@)2
P

2

3

cos(n/DM )(x!x
k
)!cos(2n/DM ) (x!x

k
)

[(n/DM ) (x!x
k
)]2

]exp A!
(x!x

k
)2

2p2 B , (16)

where DM "3
2
D. We refer to the right-hand sides of equations (15) and (16) as regularized

modi"ed Dirichlet kernel (RMDK) and regularized de la ValleH e Poussin kernel (RDLVPK)
respectively.

Since n/D is proportional to the highest frequency which can be reached in the Fourier
representation, the D should be very small for a given problem involving very oscillatory
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functions or very high frequency components. Finally, a regularized Lagrange kernel
(RLK) [30]

2M
<
iOk

x!x
i

x
k
!x

i

expA!
(x!x

k
)2

2p2 B , (17)

will also be employed in some calculations.
We use a symmetrically (or antisymmetrically) truncated, translation invariant

convolution kernel

f (n) (x)+
W
+

k/~W

d(n)a,p (x!x
k
) f (x

k
) (n"0, 1, 2,2), (18)

where 2=#1 is the computational bandwidth, or e!ective kernel support, which is usually
smaller than the whole computational domain, [a, b]. Here d(n)a,p (x!x

k
) is a collective

symbol for the nth derivative of any of the right-hand side of equations (11), (14)}(17).
Consider a linear operator L having a di!erential part D and a function part F:

L"D#F. (19)

In the DSC approach, it is convenient to choose a grid representation for the co-ordinate so
that the function part F of the operator is diagonal. Hence, its discretization is simply given
by a direct interpolation on the grid

F(x)PF(x
k
)d

m,k
. (20)

The di!erential part of the operator on the co-ordinate grid is then represented by
functional derivatives

D"+
n

d
n
(x)

dn

dxn
P+

n

d
n
(x

m
)d(n)a,p(xm

!x
k
) , (21)

where d
n
(x) is a coe$cient and d(n)a,p (xm

!x
k
) is analytically given by

d(n)a,p (xm
!x

k
)"CA

d

dxB
n
da,p (x!x

k
)D

x/xm

. (22)

Thus, the full DSC-matrix representation for the operator, L, is given by

L(x
m
!x

k
)"+

n

d
n
(x

m
)d(n)a,p (xm

!x
k
)#F (x

m
)d

m,k
. (23)

This treatment can be easily extended to higher dimensions as the generalized functions can
be easily extended to higher dimensions.

In the present study we limit our attention to the quasi-wavelet scaling function (QWSF),
regularized Dirichlet kernel (RDK), regularized modi"ed Dirichlet kernel (RMDK),
regularized de la ValleH e Poussin kernel (RDLVPK) and regularized Lagrange kernel (RLK).
Nevertheless, various other delta sequence kernels can be similarly employed [14]. It is
noted that the QWSF is parameter free, which is convenient for applications. The 2M#1
parameter for the RDK and RMDK is chosen as 188 and 2M"80 is used for the RLK for
all calculations. We note that as long as the M value chosen is su$ciently large the
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numerical results are not sensitive to the speci"c values used. It is noted that the choice of
M does not depend on the computational grid.

3. NUMERICAL APPLICATIONS

In this section, we consider problems of various physical origins, including vibrations of
strings, rods, beams, molecules, membranes, waveguides and plates, to test the present
algorithm and to illustrate its application. Details of these applications are described in the
following six subsections.

3.1. VIBRATION OF STRINGS AND RODS

3.1.1. ¸ateral vibration of spring

Let us consider a string of line density v that is taut initially with a tension ¹. We are
assuming that the de#ection of the string does not a!ect the tension of the string, so that the
tension remains constant at all times. The displacement y(x, t) of the taut string in the
normal direction is governeds

L2y

Lt2
"c2

L2y

Lx2
, (24)

where c"(¹/v)1@2*0.

3.1.2. ¸ongitudinal vibration of rods

The motion u (x, t) of a rod in the longitudinal direction is governed by

L
Lx AEA

Lu

LxB"v
L2u

Lt2
, (25)

where v is the line density of the rod, A is the cross-section and E is the modulus of the
elasticity. Equation (25) does not admit an analytical solution in general. However, for a rod
of constant properties along its length, one obtains

L2u

Lt2
"c2

L2u

Lx2
, (26)

where c"(E/o)1@2*0 is the sound speed in the rod, and o"v/A is the density of the rod.
Both equations (24) and (25) are a one-dimensional wave equation which also describes the
propagation of electromagnetic waves in homogeneous media and torsional vibration of
rods induced by shear modulus [31]. As a test calculation, we consider a string or rod of
"nite length a and denote the common equation as

L2w

Lt2
"c2

L2w

Lx2
, x3[0, a], (27)
sby Introduced by D'Alembert in his memoitr to the Berlin Academy in 1750.



TABLE 1

Errors for string and rod vibrations

QWSF RDK

n Exact N"22 N"32 N"22 N"32

1 0)01 4)47(!10) 7)98(!17) 4)57(!10) 1)31(!15)
2 0)04 4)05(!10) 2)29(!16) 4)14(!10) 1)22(!15)
3 0)09 3)38(!10) 1)94(!16) 3)46(!10) 1)64(!15)
4 0)16 2)52(!10) 5)83(!16) 2)58(!10) 1)53(!15)
5 0)25 1)54(!10) 3)33(!16) 1)57(!10) 1)75(!15)
6 0)36 5)16(!11) 5)00(!16) 5)28(!11) 1)22(!15)
7 0)49 4)24(!11) 6)11(!16) 4)36(!11) 2)16(!15)
8 0)64 1)09(!10) 3)33(!16) 1)13(!10) 1)78(!15)
9 0)81 2)93(!10) 8)88(!16) 2)92(!10) 1)44(!15)

10 1)00 5)19(!09) 1)33(!15) 5)06(!09) 7)77(!16)
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with boundary conditions

w (0, t)"w (a, t)"0. (28)

By the method of separation of variables, equation (28) can be solved as an eigenvalue
problem for the string or rod vibration with the exact eigenvalue given by (nn/a)2.

To demonstrate the high accuracy of the DSC algorithm for string and rod vibrations, we
choose the QWSF and RDK for the grid representation. Direct diagonalization by using
a standard eigenvalue solver is performed to generate eigenvalues and eigenfunctions. In the
closed interval of [0, 10n], two sets of grids, N"22 and 32, are employed associated with
p/D"3)7 and 4)0 respectively. Our results are extremely accurate as indicated by the
absolute errors listed in Table 1.

3.2. VIBRATION OF BEAMS

The natural vibration of a beam of uniform #exural rigidity, subjected to either tensile or
compressive axial forces whose magnitude is below the value of the so-called Euler elastic
buckling critic, can be formulated as an eigenvalue problem [32]

d4w (x)

dx4
#

S

EI

d2w(x)

dx2
"k2

mA

EI
w(x), x3[0, a], (29)

with simply supported boundary condition

w (0)"
d2w (0)

dx2
"0, w(a)"

d2w (a)

dx2
"0, (30)

where a positive S represents the magnitude of a compressive force and a negative
S represents the magnitude of a tensile force, m and A are the mass density of the material
and the cross-sectional area of the beam respectively.



TABLE 2

Errors for beam eigenvalues (S/EI"0)

QWSF RDK
Exact

n k2
n

mA/EI N"22 N"32 N"22 N"32

1 0)0001 2)85(!09) 2)80(!14) 2)92(!00) 1)21(!14)
2 0)0016 2)56(!09) 1)87(!14) 2)63(!09) 3)97(!15)
3 0)0081 2)11(!09) 2)35(!14) 2)17(!09) 3)93(!15)
4 0)0256 1)53(!09) 2)06(!14) 1)56(!09) 1)29(!15)
5 0)0625 8)41(!10) 2)92(!14) 8)62(!10) 5)36(!15)
6 0)1296 1)14(!10) 2)07(!14) 1)16(!10) 8)38(!15)
7 0)2405 5)96(!10) 2)52(!14) 6)11(!10) 9)02(!15)
8 0)4096 1)17(!09) 1)61(!14) 1)20(!09) 8)55(!15)
9 0)6561 3)47(!09) 2)01(!14) 3)47(!09) 6)55(!15)

10 1)0000 5)73(!08) 2)01(!14) 5)58(!08) 5)22(!15)
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This problem is analytically soluble and its exact solutions have the form

w
n
(x)"B

n
sinA

nnx

a B, n"1, 2,2, (31)

where B
n
is an arbitrary constant, which satis"es all of the boundary conditions in equation

(30). A set of eigenvalues are given by

k2
n

mA

EI
"A

nn
a B

4
!

S

EI A
nn
a B

2
. (32)

To ensure the statement of an eigenvalue problem, the compressive force is required to be
bounded from above

S(EIA
nn
a B

2
. (33)

To demonstrate the high accuracy of the DSC algorithm for beam eigenvalue problems, we
discretize the grid by using the QWSF and RDK. In the closed interval of [0, 10n], two sets
of grids, N"22 and 32, are employed in associated with p/D"3)7 and 4)0 respectively.
Table 2 lists the absolute errors when no load is imposed (S/EI"0). The errors in the cases
of compressive force (S/EI"0)01) and the tensile force (S/EI"!1) are given in Tables 3
and 4 respectively. We note that all errors are extremely small even if only 22 grid points are
deployed in the large interval of 10n. In fact, when N"32, all of the "rst 10 eigenvalues are
of machine precision.

3.3. VIBRATIONS OF I2 MOLECULES

To illustrate the use of the DSC algorithm for molecular vibrations, we consider
a benchmark problem: the Morse potential for the I

2
molecule vibration. The SchroK dinger



TABLE 3

Errors for beam eigenvalues (S/EI"0)01)

QWSF RDK
Exact

n k2
n

mA/EI N"22 N"32 N"22 N"32

1 0)0000 2)84(!09) 3)81(!14) 2)91(!09) 1)05(!14)
2 0)0012 2)56(!09) 2)11(!14) 2)62(!09) 5)95(!15)
3 0)0072 2)11(!09) 2)28(!14) 2)16(!09) 7)37(!15)
4 0)0240 1)52(!09) 1)89(!14) 1)56(!09) 3)36(!15)
5 0)0600 8)40(!10) 2)50(!14) 8)60(!10) 3)09(!15)
6 0)1260 1)13(!10) 1)66(!14) 1)15(!10) 3)19(!15)
7 0)2352 5)96(!10) 2)37(!14) 6)11(!10) 7)24(!15)
8 0)4032 1)17(!09) 1)96(!14) 1)20(!09) 6)77(!15)
9 0)6480 3)48(!09) 2)07(!14) 3)47(!09) 9)77(!15)

10 0)9900 5)72(!08) 1)81(!14) 5)58(!08) 3)77(!15)

TABLE 4

Errors for beam eigenvalues (S/EI"!1)00)

QWSF RDK
Exact

n k2
n

mA/EI N"22 N"32 N"22 N"32

1 0)0101 3)30(!09) 2)45(!14) 3)38(!09) 1)20(!14)
2 0)0461 2)97(!09) 1)25(!14) 3)05(!09) 2)16(!15)
3 0)0981 2)46(!09) 2)25(!14) 2)51(!09) 8)66(!15)
4 0)1856 1)79(!09) 1)03(!14) 1)83(!09) 3)16(!15)
5 0)3125 1)01(!09) 2)15(!14) 1)04(!09) 1)24(!14)
6 0)4896 1)88(!10) 2)27(!14) 1)92(!10) 1)58(!14)
7 0)7301 6)10(!10) 2)69(!14) 6)25(!10) 1)91(!14)
8 1)0496 1)25(!09) 2)53(!14) 1)28(!09) 5)33(!15)
9 1)4661 3)74(!09) 1)27(!14) 3)73(!09) 6)66(!16)

10 2)0000 6)25(!08) 1)02(!14) 6)09(!08) 1)33(!15)
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equation for the problem in the co-ordinate representation is given by

C!
+2

2m

d2

dx2
#< (x)DU

k
(x)"E

k
U

k
(x), (34)

where U
k
and E

k
are the kth eigenfunction and eigenvalue respectively, and + is the Planck

constant divided by 2n. Here the Morse potential for the I
2

molecule is given by

<(x)"D[e~2ax!2e~ax#1], (35)

where D"0)0224 a.u., a"0)9374 a.u., and the reduced mass for the SchroK dinger equation
is k"119406 a.u.. The anharmonic character of Morse potential allows dissociation, here it
is one of the most popular potentials for modelling the spectroscopy and dynamics of the I

2
molecule. The SchroK dinger equation of the I

2
Morse system is actually soluble. The

analytical results for the eigenfunctions are the well-known generalized Laguerre
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polynomials [33]

U
k
"N

k
zp@2e~z@2¸P

k
(z), (36)

where z"be~ax, p"b!2k!1, b"156)047612535. Here, N
k

is the normalization
constant and is given by [33]

N
k
"C

C (p)

a
k
+
c/0

(!1)c A
!p

c BD
~1@2

. (37)

The analytical expression of the eigenvalues of the I
2

molecule is [33]

E
k
"iCk#

1

2
!

1

bAk#
1

2B
2

D , (38)

where i"5)741837286]10~4 a.u. is calculated according to the physical property of I
2
.

Since i is very small, the density of state of this system is obviously very high. Thus, it often
serves as a standard problem for testing new numerical algorithms for nearly degenerated
systems.

In a recent study, Braun et al. [34] has used this system to test their e$cient
Chebyshev}Lanczos method. They achieve a remarkably high accuracy which ranges from
7 to 9 digits using 128 grid points. To obtain a desired number of eigenvalues and
eigenfunctions, we directly diagonalize the DSC-Hamiltonian matrix. In these calculations,
the regularization is unnecessary because the potential function is bounded from below.
Therefore, we set e~x2@2p2

"1 in all kernels. In computations utilizing the QWSF, RDK,
RMDK the number of grid points used is 64 (N"64) which corresponds to the grid spacing
of 0)043077 (D"0)043077). For a comparison, we have listed our calculation and those of
Braun et al. [34] in Table 5. As seen from the Table 5, the present 64 grid point results are
from 200 to 1000 times more accurate than those of Braun et al., obtained by using 128 grid
points. Our test indicates that it requires about 1)5 time as many grid points (N"96) for the
RDLVPK to achieve the same level of accuracy as those obtained by using three other
kernels.

3.4. VIBRATION OF MEMBRANES

A membrane is a thin elastic sheet that is initially taut with a uniform tension p per unit
area through its boundary. It is further assumed that the applied deformation is much less
than the initial stretch due to the uniform tension and can be regarded as a constant. The
small transverse vibrations of a tightly stretched membrane are governed by the two-
dimensional wave equation of the form [35]

L2u

Lt2
"c2+ 2u, (39)

where u (x, y, t) denotes the tranverse displacement of the membrane from its equilibrium
position and c"(ph/o)1@2*0 is the sound velocity in the membrane. Here h is the thickness
and o the density of the membrane. The membrane is supposed to cover the rectangle
[0, a]][0, b] with edge "xed; thus u(x, y, t)"0 for x"0, x"a, y"0, y"b. This
Sturm}Liouville problem can be solved by the method of separation of variables and has



TABLE 5

Comparison of errors for the I
2

Morse oscillator

Braun et al. QWSF RDK RMDK RDLVPK
k Exact (N"128) (N"64) (N"64) (N"64) (N"96)

0 0)8529966236266942(!03) !0.10(!10) !0)14(!13) !0)14(!13) !0)14(!13) !0)14(!13)
1 0)1412462184629706(!02) !0)30(!10) !0)42(!13) !0)42(!13) !0)42(!13) !0)42(!13)
2 0)1964568661834224(!02) !0)50(!10) !0)70(!13) !0)70(!13) !0)70(!13) !0)70(!13)
3 0)2509316055240247(!02) !0)70(!10) !0)97(!13) !0)97(!13) !0)97(!13) !0)97(!13)
4 0)3046704364847777(!02) !0)89(!10) !0)12(!12) !0)12(!12) !0)12(!12) !0)12(!12)
5 0)3576733590656813(!02) !0)11(!09) !0)15(!12) !0)15(!12) !0)15(!12) !0)15(!12)
6 0)4099403732667354(!02) !0)13(!09) !0)18(!12) !0)18(!12) !0)18(!12) !0)18(!12)
7 0)4614714790879402(!02) !0)15(!09) !0)20(!12) !0)20(!12) !0)20(!12) !0)20(!12)
8 0)5122666765292955(!02) !0)16(!09) !0)23(!12) !0)23(!12) !0)23(!12) !0)23(!12)
9 0)5623259655908014(!02) !0)18(!09) !0)25(!12) !0)28(!12) !0)25(!12) !0)25(!12)

10 0)6116493462724579(!02) !0)20(!09) !0)28(!12) !0)28(!12) !0)28(!12) !0)28(!12)
11 0)6602368185742650(!02) !0)22(!09) !0)30(!12) !0)30(!12) !0)30(!12) !0)30(!12)
12 0)7080883824962227(!02) !0)23(!09) !0)33(!12) !0)33(!12) !0)33(!12) !0)33(!12)
13 0)7552040380383310(!02) !0)25(!09) !0)35(!12) !0)35(!12) !0)35(!12) !0)35(!12)
14 0)8015837852005899(!02) !0)27(!09) !0)37(!12) !0)37(!12) !0)37(!12) !0)37(!12)
15 0)8472276239829993(!02) !0)28(!09) !0)39(!12) !0)39(!12) !0)39(!12) !0)40(!12)
16 0)8921355543855595(!02) !0)30(!09) !0)41(!12) !0)41(!12) !0)41(!12) !0)41(!12)
17 0)9363075764082702(!02) !0)32(!09) !0)42(!12) !0)42(!12) !0)42(!12) !0)43(!12)
18 0)9797436900511314(!02) !0)33(!09) !0)42(!12) !0)42(!12) !0)42(!12) !0)43(!12)
19 0)1022443895314143(!01) !0)35(!09) !0)39(!12) !0)39(!12) !0)39(!12) !0)39(!12)
20 0)1064408192197306(!01) !0)36(!09) !0)29(!12) !0)30(!12) !0)29(!12) !0)28(!12)
21 0)1105636580700619(!01) !0)38(!09) !0)13(!12) !0)13(!12) !0)13(!12) !0)10(!13)
22 0)1146129060824082(!01) !0)39(!09) !0)14(!11) !0)14(!11) !0)14(!11) !0)61(!12)
23 0)1185885632567697(!01) !0)41(!09) !0)29(!11) !0)29(!11) !0)29(!11) !0)19(!11)
24 0)1224906295931461(!01) !0)42(!09) !0)17(!11) !0)17(!11) !0)18(!11) !0)46(!11)
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TABLE 6

Errors for membrane vibrations

Nth Exact]102 QWSF RLK Nth Exact]102 QWSF RLK

5 10 2)7(!13) 8)5(!15) 55 82 1)8(!10) 3)0(!12)
10 17 2)6(!13) 1)2(!14) 60 85 3)5(!13) 6)5(!14)
15 25 1)0(!14) 4)3(!14) 65 97 1)4(!13) 1)5(!13)
20 32 7)9(!12) 4)3(!13) 70 101 1)7(!14) 4)2(!11)
25 40 1)8(!14) 1)3(!14) 75 106 5)7(!14) 1)3(!13)
30 45 1)8(!14) 1)3(!14) 80 116 2)4(!13) 4)8(!12)
35 52 2)6(!12) 1)1(!13) 85 122 9)5(!14) 1)9(!10)
40 61 5)5(!12) 1)7(!13) 90 128 5)3(!13) 3)7(!11)
45 65 1)4(!12) 1)2(!10) 95 136 1)5(!12) 1)7(!12)
50 73 6)6(!13) 3)7(!12) 100 145 1)2(!11) 4)5(!11)
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a general solution of the form

u
mn

(x, y, t)"sin
mnx

a
sin

nnx

b
(A

mn
cosu

mn
t#B

mn
sinu

mn
t), (40)

where the frequency is given by

u
mn
"cCA

mn
a B

2
#A

nn
b B

2

D
1@2

. (41)

Here the constants A
mn

and B
mn

can be chosen to "t various initial conditions by using the
superposition principle and the methods of double Fourier series.

To simplify the problem further, we take the computational domain as [0, 10n]]
[0, 10n]. Both the QWSF and the RLK are deployed at a 322 mesh associated p"3)8D and
2)8D respectively. Selected eigenvalues and errors of the present numerical calculation are
listed in Table 6, obtained by the direct diagonalization of the DSC-matrices.

3.5. WAVEGUIDE MODES

The study of waveguide is based on the theory of electromagnetics. The precision of
output frequency is particularly important in the waveguide design. Let us consider the
problem of "nding the eigenvalues that determine the parameters of waveguide modes,
resonant frequencies of resonators, and many other physical parameters. To simplify the
present discussion, we limit our attention to a rectangular waveguide, with propagation in
the z direction. For the transverse magnetic (TM) mode, the four-"eld components E

x
, E

y
,

H
x

and H
y
can be expressed in terms of E

z
. In turn, E

z
can be written as

E
z
(x, y, z, t)"E (x, y)e* (ut~az), (42)

where E satis"es

L2E

Lx2
#

L2E

Ly2
#k2E"0 (43)



TABLE 7

Errors for waveguide modes

Nth Exact QWSF RDK RDL

5 0)025625 4)1(!14) 1)1(!14) 1)6(!14)
10 0)222500 5)1(!14) 1)6(!15) 3)8(!14)
15 0)300625 6)8(!14) 1)1(!14) 1)6(!14)
20 0)400625 3)9(!14) 3)0(!14) 6)7(!14)
25 0)500000 4)5(!14) 1)4(!13) 1)5(!14)
30 0)572500 3)5(!14) 3)9(!14) 7)3(!14)
35 0)652500 7)4(!15) 1)1(!14) 4)5(!14)
40 0)750625 2)0(!13) 4)6(!14) 2)3(!13)
45 0)825625 1)8(!14) 7)4(!14) 7)6(!14)
50 0)922500 2)4(!13) 2)2(!14) 2)1(!13)
55 1)015625 3)2(!14) 1)1(!15) 2)0(!13)
60 1)062500 1)5(!13) 1)9(!13) 5)4(!13)
65 1)200625 1)1(!13) 2)5(!13) 6)7(!14)
70 1)255625 7)7(!14) 1)7(!13) 1)3(!14)
75 1)355625 2)6(!14) 3)2(!14) 1)4(!13)
80 1)425625 1)3(!13) 1)0(!14) 1)2(!13)
85 1)515625 1)0(!13) 2)2(!13) 6)5(!14)
90 1)600625 4)7(!14) 4)4(!13) 6)0(!12)
95 1)690000 1)1(!12) 9)9(!13) 6)0(!11)

100 1)765625 2)9(!14) 4)1(!13) 5)1(!13)
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and vanishes on the boundary (E"0). The eigenvalue k2 determines the phase parameter
a through

k2"u2ve!a2, (44)

where e and v are dielectric constant and magnetic permeability respectively. To simplify the
problem further, we take the computational domain as [0, 10n]][0, 8n]. The QWSF,
RDK and the RLK are deployed at a 33]33 mesh with p"3)8D for the former two kernels
and 2)8D for the RLK. Results are obtained by a direct diagonalization of the DSC-matrix
with a standard eigenvalue solver. Selected eigenvalues and errors of the present numerical
calculation are listed in Table 7. The present results are accurate to at least 11 signi"cant
"gures.

3.6. VIBRATION OF PLATES

Plate analysis is an important component of engineering design, associated with
applications in many engineering "elds, such as civil, mechanical, aerospace, etc. Apart from
a few analytical soluble cases, there is no general solution for plate vibrations. Numerical
simulation is one of the major approaches for plate analysis. Various numerical methods
have been used for plate computations. In the present study, we consider only an isotropic
plate with homogeneous boundary conditions for which analytical solutions are available
for comparisons.

Let us consider the vibration of an isotropic plate with an undeformed middle surface
having a governing equation [36]

+ 4=#

I

D
+ 2=!

ou2

D
="0, (45)



TABLE 8

Errors for plate vibrations

Nth Exact]104 Error Nth Exact]104 Error Nth Exact]104 Error

1 4 1)74(!12) 34 2704 6)81(!14) 67 9604 5)68(!12)
2 25 1)54(!12) 35 2704 3)64(!12) 68 10000 1)34(!13)
3 25 2)16(!13) 36 2809 1)71(!12) 69 10000 4)03(!12)
4 64 1)79(!13) 37 2809 1)05(!13) 70 10201 1)80(!12)
5 100 9)33(!13) 38 3364 7)50(!13) 71 10201 3)93(!13)
6 100 2)72(!14) 39 3364 5)65(!13) 72 10816 2)76(!13)
7 169 2)15(!14) 40 3721 9)04(!13) 73 10816 1)66(!12)
8 169 4)40(!14) 41 3721 2)12(!12) 74 11236 1)00(!11)
9 289 2)10(!13) 42 4225 6)92(!12) 75 11236 1)73(!12)

10 289 1)82(!13) 43 4225 1)01(!12) 76 11881 1)34(!12)
11 324 6)18(!14) 44 4225 4)08(!13) 77 11881 8)58(!12)
12 400 1)92(!12) 45 4225 1)76(!13) 78 12769 4)24(!13)
13 400 1)16(!12) 46 4624 1)82(!11) 79 12769 2)81(!11)
14 625 8)41(!13) 47 4624 3)09(!14) 80 13456 2)85(!11)
15 625 1)02(!12) 48 5184 1)28(!12) 81 13456 3)32(!13)
16 676 2)61(!13) 49 5329 7)15(!12) 82 13689 2)91(!13)
17 676 1)42(!12) 50 5329 9)11(!13) 83 13689 1)58(!12)
18 841 4)11(!13) 51 5476 1)19(!12) 84 14884 1)08(!11)
19 841 8)13(!14) 42 5476 5)46(!12) 85 14884 7)62(!13)
20 1024 2)06(!13) 53 6400 2)87(!13) 86 15625 4)86(!13)
21 1156 5)50(!13) 54 6400 4)26(!13) 87 15625 6)93(!13)
22 1156 8)38(!14) 55 6724 1)87(!14) 88 15625 1)20(!13)
23 1369 1)12(!13) 56 6724 8)53(!13) 89 15625 7)29(!12)
24 1369 3)31(!13) 57 7225 1)02(!12) 90 16384 1)48(!12)
25 1600 3)85(!13) 58 7225 6)59(!14) 91 16900 1)39(!12)
26 1600 7)56(!13) 59 7225 2)76(!14) 92 16900 3)42(!13)
27 1681 6)91(!14) 60 7225 2)23(!14) 93 16900 1)41(!13)
28 1681 9)48(!14) 61 7921 8)89(!12) 94 16900 1)40(!13)
29 2025 1)09(!12) 62 7921 2)35(!12) 95 18496 3)16(!12)
30 2025 3)04(!13) 63 8100 1)28(!12) 96 18496 9)65(!12)
31 2500 2)36(!13) 64 8100 9)13(!12) 97 18769 1)45(!13)
32 2500 6)56(!14) 65 9409 4)65(!12) 98 18769 3)19(!13)
33 2500 1)59(!11) 66 9408 6)71(!12) 99 21025 2)71(!12)

100 21025 1)69(!13)
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where= is solely a function of the spatial co-ordinates, I the inplane force intensity, D the
#exural rigidity, o mass density per unit area, and u the sinusoidal time response frequency.
According to the accepted convention of the theory of elasticity, the normal force I is
positive in equation (45) if the plate is in compression and negative of the plates in tension.

The problem of all-side simply supported rectangular plates in the absence of inplane
forces (I"0) is easily soluble. The simply supported boundary conditions are given by

="0, M
x
"!DC

L2=

Lx2
#l

L2=

Ly2 D"0 (for x"0, a),

="0, M
y
"!DC

L2=

Ly2
#l

L2=

Lx2 D"0 (for y"0, b), (46)
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where l is the Poisson's ratio, and a and b are the lengths of the rectangular plate. The
analytical solution of this case is actually independent of the Poisson ratio and is given by
[36]

=
nm
"A

nm
sin

nnx

a
sin

mny

b
, n, m"1, 2,2, (47)

where A
nm

is an amplitude coe$cient determined from the initial condition of the problem
and n and m are integers. The frequency is given by

u
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o CA
nn
a B

2
#A

mn
b B

2

D. (48)

We choose the RDK to discretize a square domain of [0, 10n]][0, 10n] with 33 grid points
associated with p"4D for each dimension. The "rst 100 exact eigenvalues and absolute
errors of the present numerical calculation are listed in Table 8. With less than seven points
per wavelength, some of the errors are as small as 10~14. It is evident that the present
approach is extremely accurate for plate vibration analysis.

4. CONCLUSION

This paper explores the utility of a discrete singular convolution (DSC) algorithm [14] for
vibration analysis. Various realizations of the DSC kernels, including quasi-wavelet scaling
function (QWSF), regularized Dirichlet kernel (RDK), regularized modi"ed Dirichlet kernel
(RMDK), regularized de la ValleH e Poussin kernel (RDLVPK) and regularized Lagrange
kernel (RLK), are tested for the present computations. A number of test problems, such as
vibrations of strings, rods, beams, molecules, membranes, waveguides and plates, are
examined to illustrate the present approach.

In the "rst example, we consider the vibration of strings and rods with "xed edges. Since
this problem is governed by the one-dimensional wave equation which admits an analytical
solution, the results of the DSC approach can be objectively evaluated. By using two sets of
grid points (N"22 and 32), the DSC algorithm can achieve the machine precision for the
"rst 10 eigenmodes. Both the QWSF and RDK perform extremely well for this problem.

The second example is the free and forced vibrations of elastic Kirchho! beams. Both
compressive and tensile forces are considered in the present treatment. This example is also
very valuable because it is analytically soluble. The performances of the QWSF and RDK
are excellent; only 22 grid points in a large interval of 10n is required to achieve the accuracy
of eight signi"cant "gures or better for the "rst 10 eigenvalues. An increase of 105 times in
accuracy is achieved when the grid is slightly re"ned by a factor of 1)5 (N"32).

The third example deals with a Morse oscillator representing the I
2

molecular vibration.
The corresponding SchroK dinger equation is analytically soluble. The DSC algorithm
performs extremely well for this model. The "rst 25 eigenvalues are accurate to 12
signi"cant "gures when using only 64 grid points for the QWSF, RDK and RMDK, which
is 200 to 1000 times better than those of an e$cient Chebyshev}Lanczos method [34],
recently obtained by using 128 grid points. The RDLVPK requires 1)5 times more grid
points (96 points) to achieve the same level of accuracy as that of other kernels. This result,
however, is still about 100 to 1000 times more accurate than those of Braun et al. [34]
obtained by using 128 grid points.

The fourth example is concerned with the vibration of the membrane. The problem can
be modelled with the two-dimensional wave equation which admits a general solution. The
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QWSF and RLK are selected to discretize the [0, 10n]][0, 10n] domain with 322 mesh
points. All of the "rst 100 vibration modes are accurate to at least 11 signi"cant "gures.

The "fth example analyzed is waveguide mode computations. By appropriate physical
consideration the full Maxwell equation reduces to an eigenvalue problem for transverse
magnetic mode. We compute the resonance mode in a rectangular domain of
[0, 10n]][0, 8n] by using three di!erent convolution kernels (QWSF, RDK and RLK). By
using a reasonably small grid, we obtain results with errors at least as small as 10~11 for the
"rst 100 eigenvalues.

The last problem tackled is the thin plate vibration analysis. A uniform rectangular plate
is employed to test the present approach. To simplify the presentation, a simply supported
boundary condition is used and the resulting biharmonic equation is analytically solvable.
We utilize the RDK to estimate the "rst 100 eigenvalues (other DSC kernels provide similar
results). By using a 332 mesh in a [0, 10n]][0, 10n] domain, we obtain results with errors
as small as 10~14 for many eigenvalues.

Our results from these six test problems indicate that the present DSC algorithm is
a reliable and robust approach for the numerical analysis of vibrations. Numerical results
for more complicated vibration problems, including non-linear vibrations, complex
geometry and mixed boundary conditions, which usually do not have analytical solutions,
will be presented elsewhere.
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